易科的“太白”出世,以一种迅雷不及掩耳的速度击穿人类围棋阵营,但即便是1V5,即便是人类顶尖棋手,不少人对于易科堂而皇之的宣称AI已经在围棋领域超越人类智慧还是不满。
这里面还有许多言之有理的理由,比如,AI出现的太突然,所有人都来不及仔细研究它的下棋路数;比如,时间太近,棋手们没有完全调整到最佳状态……
只是,眼下已经来不及为人类棋手遗憾了,现在赶到战场的是来自谷歌的“阿尔法”。
继AI无可匹敌的战胜人类,易科快速确定与谷歌的技术切磋时间,直接定在了7月3日,仍旧是全程开启直播。
方卓不懂围棋,但他对于这种技术的验证和交流很有兴趣。
这次不仅仅是两个AI的对弈,易科也是在申城举办了一次与谷歌的深度学习Deep Learning的交流活动,同时还有英伟达以及硅谷近期这领域的研发人员、创业公司一起参加。
易科是真的抱着切磋的意愿,谷歌与硅谷那边也没有太多比试高低的意思,因为,这个赛道的折腾确实还没瞧见太多突破的希望,仍旧属于蓄力阶段。
也正是基于这种情况,不少没被邀请的研发者和公司瞧见两大公司的互动,也积极报名参加活动,而易科在与谷歌讨论之后就干脆扩大了规模,时间也顺势推迟到7月10日。
这便不是一场围棋对弈的AI互动,而是以它当作开胃菜的深度学习DL的研讨会议。
7月10日,易科、谷歌、英伟达等公司在申城的易科中心举办会议,同时,易科还邀请了先前被击败的柯洁、李世石、申真谞等人作为嘉宾,见证“太白”与“阿尔法”的对决。
这两个AI都有击败人类顶尖棋手的履历,太白上个月掀起的多面打与舆论炒作也成功让大众对AI充满兴趣,再加上又有现场直播,所以,观看者众多。
上午九点钟,两台机器人坐在舞台的正中央,现场架设了大屏幕,方卓、拉里等人坐在第一排,棋手柯洁、申真谞等嘉宾在直播室点评。
不同于上次同样直播的1V5,“太白”与“阿尔法”的落子都十分迅速,偶尔也有迟疑的时候,但这种时刻相较于人类便显得极其短暂。
对弈是传统规则,各自是有三小时时间,然而,仅仅三十二分钟,这场万众瞩目的棋就以“太白”赢下1子而结束。
这三十二分钟是绝大多数人看不懂的三十二分钟,不过,他们能看到棋手们的表现,能看到直播室里刚开始有分歧,中间有争执,最终变成沉默的过程。
当柯洁被邀请上台,以专业人士的身份对这盘棋进行点评,他面对镜头十分茫然,好一会之后才说道:“AI在围棋上可能已经完全超出人类想象了,上个月我好像在AI的棋里看到了古力、李昌镐、吴清源他们的影子,又、又好像看到了我自己的影子。”
柯洁神色中带着挣扎和痛苦,伸手捂脸:“今天,我看不到了,完全看不到了,我好像不懂,不懂围棋到底该是什么样了……”
主持人眼看柯洁已经有些失态,赶紧把这位人类顶尖棋手请下台,并且打了打圆场,但这个场面无疑让观看直播的人印象深刻。
AI对弈的开胃菜结束,方卓拿到话筒进行了简单的发言。
“围棋是人类智慧的杰作,但AI也是如此。”
“我对于AI的期待就是它能够极大的解放人类的双手,这一天大概很远,但就像今天的‘太白’相较于上个月的它,已经又有进步。”
“AI会以一种让人惊叹的迭代速度进化,我们今天汇聚在这里也是为了寻找正确的发展方向。”
“AI是在围棋领域赢了人类,但这不是人类智慧的终结,反而是人类智慧的延伸,是科技的又一次进步,也是对未来的又一次探索。”
方卓这种看法的表达还是赢来了不少掌声与直播间的好评。
对于许多人来说,这场热闹也就看到这里了,但对从业者、研发人员来说,真正的部分才刚刚开始,不论易科还是谷歌都在深度学习DL领域有很深的研究,这种围棋对弈只是展露出的表象,内里的运转与思考才是更让人重视的。
吴恩达作为易科“Venus”项目的负责人之一,与谷歌旗下公司的席尔瓦就DL的模型逻辑进行了交流。
不管太白还是阿尔法,它们都是基于卷积神经网络的发展而来,这一基础是类似的,而它的突破源于2012年Alex、Ilya和Hinton合作发表的关于AlexNet深度卷积神经网络的论文,也正是在这之后,相关的研究出现了爆炸式的增长。
吴恩达与席尔瓦谈的是在AlexNet之后的架构创新,是将传统的搜索算法与深度学习模型的有效整合,以及,整个团队在局部感受野、参数共享与稀疏连接、平移不变性这些方面做出的努力。
这种易科与谷歌以及场下嘉宾的交流极其愉快,也让方卓颇为满意,他虽然不懂,但瞧着这样的场面就觉得知识被塞进了脑子里。
只是,等到第二天,当吴恩达提出团队在研发上的困惑时,激烈的辩论到来了。
易科是有“Siri”这样的语音助手作为人工智能的实践,而吴恩达的团队不仅在做卷积神经网络CNN的研究,也在做循环神经网络RNN的研究,他们认为后者更适合与语音助手相结合,但效果并不算很好,完全达不到想要的成绩。
问题出在哪里?
吴恩达表述了困惑,也谈了谈易科内部的解决方向。
参会的一部分人赞同易科的解题思路,但谷歌方面却出现了不同的声音。
“为什么非要使用循环神经网络?”谷歌的乌思克尔特本来正在休假,但因为对DL的交流感兴趣便报名过来,“为什么不试试自注意力Self-attention?我认为它对NLP领域将会有更优秀的改变。”
“Self-attention可以进行更好的并行计算能力,而不是像RNN那样进行顺序处理,它还能直接比较序列中任意两个位置的向量表示,这样就能更有效的捕捉和利用长距离依赖关系,但RNN不行!”
“RNN虽然理论上也能捕捉长距离依赖,但实际上往往因梯度消失或爆炸问题而难以实现!”
乌思克尔特研究的是谷歌的机器翻译改进方法,他的父亲就是计算语言学的教授,尽管刚开始进入谷歌时对语言翻译的工作很不喜欢,但最终还是专注于这一领域的研究,而他近期正在琢磨的便是“自注意力Self-attention”在相关领域的改善。
吴恩达很快明白这位谷歌研究员的意思,也在几经思索后给予反驳:“自注意力没有显式地编码位置信息,这就意味着如果以它为核心的模型无法区分序列中相同词语在不同位置的意义差异,而在自然语言的处理中,词语的语义又与位置紧密相关。”
“而且,自注意力模型必然因为序列中每对元素计算的注意力权重而有巨大的参数量,这极可能导致过拟合。”
他这边刚说话,谷歌自家DL的席尔瓦也反驳了乌思克尔特提出的新路线,其中一个重要原因在于RNN的循环结构太符合大家对序列数据处理的理解,即当前状态依赖于过去的信息,而自注意力的全局依赖一看就不如RNN直观。
易科与谷歌的两大领导者都批评了自注意力Self-attention,但乌思克尔特并不服气,他直接登台阐述自己更多的想法。
而且,针对吴恩达与席尔瓦抨击的缺点也给出一些解决思路,比如,引入位置编码,比如,进行多头注意力的研究。
有人觉得眼前一亮,有人觉得异想天开,还有人现场进行快速的分析和演算。
第一排的方卓极其茫然,他扭头询问旁边沉思的英伟达掌门人黄仁勋:“他们在讨论什么?”
“乌思克尔特说, GPU是最适合深度学习技术的硬件。”黄仁勋给出一句总结。
方卓:“???”